Smallest counterexample to the Fulkerson conjecture must be cyclically 5-edge-connected

Edita Máčajová

Comenius University, Bratislava

Paris, May 2019

joint work with Giuseppe Mazzuoccolo

Fulkerson Conjecture

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Fulkerson Conjecture

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

Fulkerson Conjecture (Berge, Fulkerson, 1971)

6 perfect matchings on I_5

Edita Máčajová (Bratislava)

6 perfect matchings on I_5

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

• Do we need to require a graph to be bridgeless?

Fulkerson Conjecture (Berge, Fulkerson, 1971)

- Do we need to require a graph to be bridgeless?
 - > YES! (a bridge in a cubic graph belongs to every perfect matching)

Fulkerson Conjecture (Berge, Fulkerson, 1971)

- Do we need to require a graph to be bridgeless?
 - YES! (a bridge in a cubic graph belongs to every perfect matching)
- trivially true for 3-edge-colourable graphs

Fulkerson Conjecture (Berge, Fulkerson, 1971)

- Do we need to require a graph to be bridgeless?
 - YES! (a bridge in a cubic graph belongs to every perfect matching)
- trivially true for 3-edge-colourable graphs
- DIFFERENT FORMULATION: if we double the edges in a bridgeless cubic graph, we obtain class 1 graph

Fulkerson Conjecture (Berge, Fulkerson, 1971)

- Do we need to require a graph to be bridgeless?
 - YES! (a bridge in a cubic graph belongs to every perfect matching)
- trivially true for 3-edge-colourable graphs
- DIFFERENT FORMULATION: if we double the edges in a bridgeless cubic graph, we obtain class 1 graph
- if subtraction is permitted, then the constant function 2 can be obtained [Seymour, 1977]

Covering all edges in graph with the same number of perfect matchings

Conjecture (Weak Version of Fulkerson Conjecture)

There exists a constant k such that any bridgeless cubic graphs contains a family of 3k perfect matchings that together cover every edge exactly k-times.

Covering all edges in graph with the same number of perfect matchings

Conjecture (Weak Version of Fulkerson Conjecture)

There exists a constant k such that any bridgeless cubic graphs contains a family of 3k perfect matchings that together cover every edge exactly k-times.

Theorem (Edmonds 1965)

For any bridgeless cubic graph there exists a constant k and 3k perfect matchings such that each edge is in k of them.

Covering all edges in graph with the same number of perfect matchings

Conjecture (Weak Version of Fulkerson Conjecture)

There exists a constant k such that any bridgeless cubic graphs contains a family of 3k perfect matchings that together cover every edge exactly k-times.

Theorem (Edmonds 1965)

For any bridgeless cubic graph there exists a constant k and 3k perfect matchings such that each edge is in k of them.

- $\exists k \forall G \exists 3k \text{ PM s.t. every edge is in } k \text{ PM ... } ??? OPEN$
- $\forall G \exists k \exists 3k \text{ PM s.t. every edge is in } k \text{ PM } \dots \checkmark \text{ YES}$

the Fulkerson conjecture is

the Fulkerson conjecture is

• proven only for several explicitly defined classes of graphs

the Fulkerson conjecture is

- proven only for several explicitly defined classes of graphs
- equivalent to the statement that every bridgeless cubic graph contains pair of edge-disjoint matchings M_1 and M_2 such that
 - (i) $M_1 \cup M_2$ induces a 2-regular subgraph of G and
 - (ii) the graph obtained from $G \setminus M_i$ by suppressing all degree-2-vertices, is 3-edge-colourable for each i=1,2.

[Hao, Niu, Wang, Zhang, Zhang, 2009]

the Fulkerson conjecture is

- proven only for several explicitly defined classes of graphs
- equivalent to the statement that every bridgeless cubic graph contains pair of edge-disjoint matchings M_1 and M_2 such that
 - (i) $M_1 \cup M_2$ induces a 2-regular subgraph of G and
 - (ii) the graph obtained from $G \setminus M_i$ by suppressing all degree-2-vertices, is 3-edge-colourable for each i=1,2.

[Hao, Niu, Wang, Zhang, Zhang, 2009]

• is true for cubic graphs that are $C_{(8)}$ -linked [Hao, Zhang, Zheng, 2018]

Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings that together cover all the edges of the graph.

Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings that together cover all the edges of the graph.

• Fulkerson Conjecture \Rightarrow Berge Conjecture

Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings that together cover all the edges of the graph.

• Fulkerson Conjecture \Rightarrow Berge Conjecture

Theorem (Mazzuoccolo, 2011)

The Berge Conjecture and the Fulkerson Conjecture are equivalent.

Petersen colouring conjecture

Petersen colouring conjecture

The edges of every bridgeless cubic graphs can be coloured with the edges of the Petersen graph in such a way that colours of three edges that meet at any vertex meet at a vertex of the Petersen graph.

Petersen colouring conjecture

Petersen colouring conjecture

The edges of every bridgeless cubic graphs can be coloured with the edges of the Petersen graph in such a way that colours of three edges that meet at any vertex meet at a vertex of the Petersen graph.

• the Petersen colouring conjecture implies the Fulkerson conjecture

Cremona-Richmond configuration

Cremona-Richmond configuration

Edita Máčajová (Bratislava)

Fan-Raspaud Conjecture

Fan-Raspaud Conjecture, 1994

Every bridgeless cubic graph has three perfect matchings with empty intersection.

Fan-Raspaud Conjecture

Fan-Raspaud Conjecture, 1994

Every bridgeless cubic graph has three perfect matchings with empty intersection.

• FC implies Fan-Raspaud conjecture

Edita Máčajová (Bratislava)

 F_6 -configuration is bridgeless universal [EM,Škoviera]

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles

Conjecture (Jaeger, Swart'80)

There are no snarks with cyclic connectivity greater than 6.

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles

Conjecture (Jaeger, Swart'80)

There are no snarks with cyclic connectivity greater than 6.

Oddness $\xi(G)$ of a bridgeless cubic graph G is the smallest number of odd simple cycles in a 2-factor of G.

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles

Conjecture (Jaeger, Swart'80)

There are no snarks with cyclic connectivity greater than 6.

Oddness $\xi(G)$ of a bridgeless cubic graph G is the smallest number of odd simple cycles in a 2-factor of G.

• $\xi(G) = 0 \Leftrightarrow G$ is 3-edge-colourable

Minimal counterexamples to some conjectures

conj.	girth	cyclic connectivity	oddness	
5–flow Conjecture	≥ 11 [Kochol]	≥ 6 [Kochol]	≥ 6 [Mazzuoccoll	o, Steffen]
5–cycle double cover C.	≥ 12 [Huck]	≥ 4	≥ 6 [Huck]	
Fulkerson Conjecture	≥ 5	≥ 4	≥ 2	

suppose that a smallest counterexample to FC contains a 3-edge-cut

similarly, we can reduce 2-edge-cuts

suppose that a smallest counterexample to FC contains a 3-edge-cut

similarly, we can reduce 2-edge-cuts, therefore

Observation

A smallest potential counterexample to the FC is cyclically 4-edge-connected.

Parity lemma

Lemma

Let G be a k-regular multipole. Assume that the edges of G are coloured with k-colours and n_i dangling edges has colour i. Then

 $n_1 \equiv n_2 \equiv \ldots \equiv n_k \pmod{2}$.

Parity lemma

Lemma

Let G be a k-regular multipole. Assume that the edges of G are coloured with k-colours and n_i dangling edges has colour i. Then

$$n_1 \equiv n_2 \equiv \ldots \equiv n_k \pmod{2}$$
.

4 cuts:

T_2	T_3	T_4	A

Parity lemma

Lemma

Let G be a k-regular multipole. Assume that the edges of G are coloured with k-colours and n_i dangling edges has colour i. Then

$$n_1 \equiv n_2 \equiv \ldots \equiv n_k \pmod{2}$$
.

4 cuts:

T_2	T_3	T_4	A

We only are interested in the partition of edges, not in the colours themselves.

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

1 2	1 2
1 2	1 2
1 2	1 3
1 2	13
AA	AT_2

1 2	1 2	1
1 2	1 2	1
1 2	1 3	
1 2	13	
AA	AT_2	

1 2	1 2	1
1 2	1 2	1
1 2	13	2
1 2	13	3
AA	AT_2	

1 2	1 2	1 2
1 2	1 2	13
1 2	13	2
1 2	13	3
AA	AT_2	

1 2	1 2	1 2
1 2	1 2	13
1 2	13	24
1 2	13	34
AA	AT_2	

1 2	1 2	1 2	1 2
1 2	1 2	13	13
1 2	1 3	2 4	4 2
1 2	13	34	4 3
AA	AT_2		$T_2 T_3$

1 2	1 2	1 2	1 2
1 2	1 2	13	13
1 2	1 3	2 4	4 2
1 2	13	34	4 3
AA	AT_2		$T_2 T_3$

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

1 2	1 2	1 2	1 2
1 2	1 2	1 3	13
1 2	13	2 4	4 2
1 2	13	34	4 3
AA	AT_2		T_2T_3

• there are $\binom{4}{2} + 4 = 10$ types of Fulkerson colourings of a 4-edges-cut

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

12	1 2	1 2	1 2
1 2	1 2	13	13
1 2	1 3	2 4	4 2
1 2	13	34	4 3
AA	AT_2		T_2T_3

• there are $\binom{4}{2} + 4 = 10$ types of Fulkerson colourings of a 4-edges-cut • there are 2^{10} possible sets of types of colouring, BUT

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

12	1 2	1 2	1 2
1 2	1 2	13	13
1 2	1 3	2 4	4 2
1 2	13	34	4 3
AA	AT_2		T_2T_3

there are (⁴₂) + 4 = 10 types of Fulkerson colourings of a 4-edges-cut
there are 2¹⁰ possible sets of types of colouring, BUT

not all of them are achievable (Kempe chains)

Edita Máčajová (Bratislava)

Edita Máčajová (Bratislava)

Kempe chains for a Fulkerson colouring

Edita Máčajová (Bratislava)

Graph of Fulkerson colourings M

according to a possible Fulkerson colouring, each 4-pole corresponds to a subraph of ${\cal M}$

Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

• a smallest counterexample is cyclically 4-edge-connected

Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

- a smallest counterexample is cyclically 4-edge-connected
- assume that G is a smallest counterexample and that G contains a cycle separating 4-edge-cut S

Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

- a smallest counterexample is cyclically 4-edge-connected
- assume that G is a smallest counterexample and that G contains a cycle separating 4-edge-cut S

Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

- a smallest counterexample is cyclically 4-edge-connected
- assume that G is a smallest counterexample and that G contains a cycle separating 4-edge-cut S

Sketch of the proof

• M_1 and M_2 are edge-disjoint

- M_1 and M_2 are edge-disjoint
- both G_1 and G_2 admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of G, therefore

- M_1 and M_2 are edge-disjoint
- both G_1 and G_2 admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of G, therefore
- both M_1 and M_2 are non-empty

- M₁ and M₂ are edge-disjoint
- both G_1 and G_2 admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of G, therefore
- both M_1 and M_2 are non-empty
- neither M_i nor $\overline{M_i}$ contains a subgraph isomorphic to \subseteq

AA, AT_1, T_1T_1

Edita Máčajová (Bratislava)

$AA, AT_1, \, T_1T_1$

 $AA, AT_1, \, T_1T_1$

 T_3T_3, T_3T_4, T_4T_4

• M₁ and M₂ are edge-disjoint

- both *G*₁ and *G*₂ admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of *G*, therefore
- both M_1 and M_2 are non-empty
- neither M_i nor $\overline{M_i}$ contains a subgraph isomorphic to

• M₁ and M₂ are edge-disjoint

- both *G*₁ and *G*₂ admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of *G*, therefore
- both M_1 and M_2 are non-empty
- neither M_i nor $\overline{M_i}$ contains a subgraph isomorphic to ζ
- no vertices of degree 1 in M_1 nor M_2 (Kempe chains)

• M₁ and M₂ are edge-disjoint

- both G_1 and G_2 admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of G, therefore
- both M_1 and M_2 are non-empty
- neither M_i nor $\overline{M_i}$ contains a subgraph isomorphic to \bigcirc
- no vertices of degree 1 in M_1 nor M_2 (Kempe chains)
- no vertices of degree 2 in M_1 nor M_2 incident with a loop (Kempe chains)

• 56 types of colourings

- 56 types of colourings
- 2^{56} subsets

- 56 types of colourings
- 2⁵⁶ subsets
- with the help of a computer we identified the subsets that are

- 56 types of colourings
- 2⁵⁶ subsets
- with the help of a computer we identified the subsets that are
 - closed under 1 and 2 Kempe switches

- 56 types of colourings
- 2⁵⁶ subsets
- with the help of a computer we identified the subsets that are
 - closed under 1 and 2 Kempe switches
 - do not contain a subsets of colourings corresponding to an acyclic 5-pole

- 56 types of colourings
- 2⁵⁶ subsets
- with the help of a computer we identified the subsets that are
 - closed under 1 and 2 Kempe switches
 - do not contain a subsets of colourings corresponding to an acyclic 5-pole
 - their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole

- 56 types of colourings
- 2⁵⁶ subsets
- with the help of a computer we identified the subsets that are
 - closed under 1 and 2 Kempe switches
 - do not contain a subsets of colourings corresponding to an acyclic 5-pole
 - their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole
 - have in complement one of such sets

- 56 types of colourings
- 2⁵⁶ subsets
- with the help of a computer we identified the subsets that are
 - closed under 1 and 2 Kempe switches
 - do not contain a subsets of colourings corresponding to an acyclic 5-pole
 - their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole
 - have in complement one of such sets
- 13 pairs left of sets of colourings

Theorem

Let G be a smallest counterexample to the Fulkerson conjecture. Then G is cyclically 5-edge-connected and every cycle separating 5-edge-cut either separates 5-circuit or separates sets of colourings S_1 and S_2 .

Edita Máčajová (Bratislava)

Fulkerson conjecture

Thank you for your attention!