# Smallest counterexample to the Fulkerson conjecture must be cyclically 5-edge-connected 

Edita Máčajová

## Comenius University, Bratislava

Paris, May 2019
joint work with Giuseppe Mazzuoccolo

## Fulkerson Conjecture

Theorem (Petersen, 1891)
Every bridgeless cubic graphs contains a perfect matching.

## Fulkerson Conjecture

Theorem (Petersen, 1891)
Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)
Every edge of a bridgeless cubic graphs is contained in a perfect matching.

## Fulkerson Conjecture

Theorem (Petersen, 1891)
Every bridgeless cubic graphs contains a perfect matching.
Theorem (Schönberger, 1934)
Every edge of a bridgeless cubic graphs is contained in a perfect matching.

## Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

6 perfect matchings on $/ 5$


6 perfect matchings on $/ 5$


## Introduction

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

## Introduction

## Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

- Do we need to require a graph to be bridgeless?


## Introduction

## Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

- Do we need to require a graph to be bridgeless?
- YES! (a bridge in a cubic graph belongs to every perfect matching)


## Introduction

## Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

- Do we need to require a graph to be bridgeless?
- YES! (a bridge in a cubic graph belongs to every perfect matching)
- trivially true for 3-edge-colourable graphs


## Introduction

## Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

- Do we need to require a graph to be bridgeless?
- YES! (a bridge in a cubic graph belongs to every perfect matching)
- trivially true for 3-edge-colourable graphs
- DIFFERENT FORMULATION: if we double the edges in a bridgeless cubic graph, we obtain class 1 graph


## Introduction

## Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

- Do we need to require a graph to be bridgeless?
- YES! (a bridge in a cubic graph belongs to every perfect matching)
- trivially true for 3-edge-colourable graphs
- DIFFERENT FORMULATION: if we double the edges in a bridgeless cubic graph, we obtain class 1 graph
- if subtraction is permitted, then the constant function 2 can be obtained [Seymour, 1977]

Covering all edges in graph with the same number of perfect matchings

## Conjecture (Weak Version of Fulkerson Conjecture)

There exists a constant $k$ such that any bridgeless cubic graphs contains a family of $3 k$ perfect matchings that together cover every edge exactly $k$-times.

Covering all edges in graph with the same number of perfect matchings

## Conjecture (Weak Version of Fulkerson Conjecture)

There exists a constant $k$ such that any bridgeless cubic graphs contains a family of $3 k$ perfect matchings that together cover every edge exactly $k$-times.

## Theorem (Edmonds 1965)

For any bridgeless cubic graph there exists a constant $k$ and $3 k$ perfect matchings such that each edge is in $k$ of them.

Covering all edges in graph with the same number of perfect matchings

## Conjecture (Weak Version of Fulkerson Conjecture)

There exists a constant $k$ such that any bridgeless cubic graphs contains a family of $3 k$ perfect matchings that together cover every edge exactly $k$-times.

## Theorem (Edmonds 1965)

For any bridgeless cubic graph there exists a constant $k$ and $3 k$ perfect matchings such that each edge is in $k$ of them.

- $\exists k \forall G \exists 3 k$ PM s.t. every edge is in $k$ PM ... ??? OPEN
- $\forall G \exists k \exists 3 k$ PM s.t. every edge is in $k$ PM ... $\checkmark$ YES


## Results towards the Fulkerson conjecture

the Fulkerson conjecture is

## Results towards the Fulkerson conjecture

the Fulkerson conjecture is

- proven only for several explicitly defined classes of graphs


## Results towards the Fulkerson conjecture

## the Fulkerson conjecture is

- proven only for several explicitly defined classes of graphs
- equivalent to the statement that every bridgeless cubic graph contains pair of edge-disjoint matchings $M_{1}$ and $M_{2}$ such that
(i) $M_{1} \cup M_{2}$ induces a 2-regular subgraph of $G$ and
(ii) the graph obtained from $G \backslash M_{i}$ by suppressing all degree-2-vertices, is 3-edge-colourable for each $\mathrm{i}=1,2$.
[Hao, Niu, Wang, Zhang, Zhang, 2009]


## Results towards the Fulkerson conjecture

## the Fulkerson conjecture is

- proven only for several explicitly defined classes of graphs
- equivalent to the statement that every bridgeless cubic graph contains pair of edge-disjoint matchings $M_{1}$ and $M_{2}$ such that
(i) $M_{1} \cup M_{2}$ induces a 2-regular subgraph of $G$ and
(ii) the graph obtained from $G \backslash M_{i}$ by suppressing all degree-2-vertices, is 3-edge-colourable for each $\mathrm{i}=1,2$.
[Hao, Niu, Wang, Zhang, Zhang, 2009]
- is true for cubic graphs that are $C_{(8)}$-linked [Hao, Zhang, Zheng, 2018]


## Berge Conjecture

## Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings that together cover all the edges of the graph.

## Berge Conjecture

## Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings that together cover all the edges of the graph.

- Fulkerson Conjecture $\Rightarrow$ Berge Conjecture


## Berge Conjecture

## Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings that together cover all the edges of the graph.

- Fulkerson Conjecture $\Rightarrow$ Berge Conjecture

Theorem (Mazzuoccolo, 2011)
The Berge Conjecture and the Fulkerson Conjecture are equivalent.

## Petersen colouring conjecture

## Petersen colouring conjecture

The edges of every bridgeless cubic graphs can be coloured with the edges of the Petersen graph in such a way that colours of three edges that meet at any vertex meet at a vertex of the Petersen graph.

## Petersen colouring conjecture

## Petersen colouring conjecture

The edges of every bridgeless cubic graphs can be coloured with the edges of the Petersen graph in such a way that colours of three edges that meet at any vertex meet at a vertex of the Petersen graph.

- the Petersen colouring conjecture implies the Fulkerson conjecture


## Cremona-Richmond configuration



Cremona-Richmond configuration

## Fan-Raspaud Conjecture

## Fan-Raspaud Conjecture, 1994

Every bridgeless cubic graph has three perfect matchings with empty intersection.


## Fan-Raspaud Conjecture

## Fan-Raspaud Conjecture, 1994

Every bridgeless cubic graph has three perfect matchings with empty intersection.


- FC implies Fan-Raspaud conjecture


## Fano Plane



## Fano Plane



## Fano Plane



## Fano Plane


$F_{6}$-configuration is bridgeless universal [EM,Škoviera]

## Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles


## Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles


## Conjecture (Jaeger, Swart'80)

There are no snarks with cyclic connectivity greater than 6 .

## Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles


## Conjecture (Jaeger, Swart'80)

There are no snarks with cyclic connectivity greater than 6.
Oddness $\xi(G)$ of a bridgeless cubic graph $G$ is the smallest number of odd simple cycles in a 2 -factor of $G$.

## Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles


## Conjecture (Jaeger, Swart'80)

There are no snarks with cyclic connectivity greater than 6.
Oddness $\xi(G)$ of a bridgeless cubic graph $G$ is the smallest number of odd simple cycles in a 2 -factor of $G$.

- $\xi(G)=0 \Leftrightarrow G$ is 3-edge-colourable


## Minimal counterexamples to some conjectures

| conj. | girth | cyclic <br> connectivity | oddness |
| :--- | :---: | :---: | :---: |
| 5-flow <br> Conjecture | $\geq 11$ <br> [Kochol] | $\underset{\text { [Kochol] }}{ }$ | $\geq 6$ <br> [Mazzuoccollo, Steffen] |
| 5-cycle double <br> cover C. | $\geq 12$ <br> [Huck] | $\geq 4$ | $\geq 6$ <br> [Huck] |
| Fulkerson <br> Conjecture | $\geq 5$ | $\geq 4$ | $\geq 2$ |

## Reduction of 2- and 3- cycle separating cuts

suppose that a smallest counterexample to FC contains a 3-edge-cut

## Reduction of 2- and 3- cycle separating cuts

suppose that a smallest counterexample to FC contains a 3-edge-cut


## Reduction of 2- and 3- cycle separating cuts

suppose that a smallest counterexample to FC contains a 3-edge-cut


## Reduction of 2- and 3- cycle separating cuts

suppose that a smallest counterexample to FC contains a 3-edge-cut


## Reduction of 2- and 3- cycle separating cuts

suppose that a smallest counterexample to FC contains a 3-edge-cut


## Reduction of 2- and 3- cycle separating cuts

suppose that a smallest counterexample to FC contains a 3-edge-cut

similarly, we can reduce 2-edge-cuts

## Reduction of 2- and 3- cycle separating cuts

suppose that a smallest counterexample to FC contains a 3-edge-cut

similarly, we can reduce 2-edge-cuts, therefore

## Observation

A smallest potential counterexample to the FC is cyclically 4-edge-connected.

## Parity lemma

## Lemma

Let $G$ be a $k$-regular multipole. Assume that the edges of $G$ are coloured with $k$-colours and $n_{i}$ dangling edges has colour $i$. Then

$$
n_{1} \equiv n_{2} \equiv \ldots \equiv n_{k} \quad(\bmod 2)
$$

## Parity lemma

## Lemma

Let $G$ be a $k$-regular multipole. Assume that the edges of $G$ are coloured with $k$-colours and $n_{i}$ dangling edges has colour $i$. Then

$$
n_{1} \equiv n_{2} \equiv \ldots \equiv n_{k} \quad(\bmod 2)
$$

## 4 cuts:



## Parity lemma

## Lemma

Let $G$ be a $k$-regular multipole. Assume that the edges of $G$ are coloured with $k$-colours and $n_{i}$ dangling edges has colour $i$. Then

$$
n_{1} \equiv n_{2} \equiv \ldots \equiv n_{k} \quad(\bmod 2)
$$

## 4 cuts:



We only are interested in the partition of edges, not in the colours themselves.

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

12
12
12
12
AA

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

$$
\begin{array}{lll}
1 & 2 & \\
12 & & 12 \\
12 & & 13 \\
12 & & 13 \\
A A & & A T_{2}
\end{array}
$$

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

$$
\begin{array}{llll}
12 & 12 & 1 \\
12 & 12 & 1 \\
12 & 13 & \\
12 & 13 & \\
A A & A T_{2} &
\end{array}
$$

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

| 12 | 12 | 1 |
| :--- | :--- | :--- | :--- |
| 12 | 12 | 1 |
| 12 | 13 | 2 |
| 12 | 13 | 3 |
| $A A$ | $A T_{2}$ |  |

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

| 12 | 12 | 12 |
| :--- | :--- | :--- |
| 12 | 12 | 13 |
| 12 | 13 | 2 |
| 12 | 13 | 3 |
| $A A$ | $A T_{2}$ |  |

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

| 12 | 12 | 12 |
| :--- | :--- | :--- |
| 12 | 12 | 13 |
| 12 | 13 | 24 |
| 12 | 13 | 34 |
| $A A$ | $A T_{2}$ |  |

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

| 12 | 12 | 12 | 12 |
| :---: | :---: | :---: | :---: |
| 12 | 12 | 13 | 13 |
| 12 | 13 | 24 | 42 |
| 12 | 13 | 34 | 43 |
| AA | $A T_{2}$ |  | $T_{2} T_{3}$ |

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

| 12 | 12 | 12 | 12 |
| :---: | :---: | :---: | :---: |
| 12 | 12 | 13 | 13 |
| 12 | 13 | 24 | 42 |
| 12 | 13 | 34 | 43 |
| AA | $A T_{2}$ |  | $T_{2} T_{3}$ |

## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

| 12 | 12 | 12 | 12 |
| :---: | :---: | :---: | :---: |
| 12 | 12 | 13 | 13 |
| 12 | 13 | 24 | 42 |
| 12 | 13 | 34 | 43 |
| AA | $A T_{2}$ |  | $T_{2} T_{3}$ |

- there are $\binom{4}{2}+4=10$ types of Fulkerson colourings of a 4-edges-cut


## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

| 12 | 12 | 12 | 12 |
| :---: | :---: | :---: | :---: |
| 12 | 12 | 13 | 13 |
| 12 | 13 | 24 | 42 |
| 12 | 13 | 34 | 43 |
| AA | $A T_{2}$ |  | $T_{2} T_{3}$ |

- there are $\binom{4}{2}+4=10$ types of Fulkerson colourings of a 4-edges-cut
- there are $2^{10}$ possible sets of types of colouring, BUT


## "Splitting" of a Fulkerson colouring

"Splitting" of a Fulkerson colouring into two 3-edge-colourings of a 4-edge-cut

| 12 | 12 | 12 | 12 |
| :---: | :---: | :---: | :---: |
| 12 | 12 | 13 | 13 |
| 12 | 13 | 24 | 42 |
| 12 | 13 | 34 | 43 |
| $A A$ | $A T_{2}$ |  | $T_{2} T_{3}$ |

- there are $\binom{4}{2}+4=10$ types of Fulkerson colourings of a 4-edges-cut
- there are $2^{10}$ possible sets of types of colouring, BUT
- not all of them are achievable (Kempe chains)


## Kempe chains

## Kempe chains



## Kempe chains



## Kempe chains



## Kempe chains for a Fulkerson colouring



## Graph of Fulkerson colourings $M$

according to a possible Fulkerson colouring, each 4-pole corresponds to a subraph of $M$


## Main result

## Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

## Main result

## Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

- a smallest counterexample is cyclically 4-edge-connected


## Main result

## Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

- a smallest counterexample is cyclically 4-edge-connected
- assume that $G$ is a smallest counterexample and that $G$ contains a cycle separating 4-edge-cut $S$



## Main result

## Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

- a smallest counterexample is cyclically 4-edge-connected
- assume that $G$ is a smallest counterexample and that $G$ contains a cycle separating 4-edge-cut $S$



## Main result

## Theorem

A smallest possible counterexample to the Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

- a smallest counterexample is cyclically 4-edge-connected
- assume that $G$ is a smallest counterexample and that $G$ contains a cycle separating 4-edge-cut $S$

subgraphs of $M$


## Sketch of the proof

- $M_{1}$ and $M_{2}$ are edge-disjoint


## Sketch of the proof

- $M_{1}$ and $M_{2}$ are edge-disjoint
- both $G_{1}$ and $G_{2}$ admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of $G$, therefore


## Sketch of the proof

- $M_{1}$ and $M_{2}$ are edge-disjoint
- both $G_{1}$ and $G_{2}$ admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of $G$, therefore
- both $M_{1}$ and $M_{2}$ are non-empty


## Sketch of the proof

- $M_{1}$ and $M_{2}$ are edge-disjoint
- both $G_{1}$ and $G_{2}$ admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of $G$, therefore
- both $M_{1}$ and $M_{2}$ are non-empty
- neither $M_{i}$ nor $\overline{M_{i}}$ contains a subgraph isomorphic to


No $\bigcirc$ subgraph of $M_{i}$ or $\overline{M_{i}}$

$A A, A T_{1}, T_{1} T_{1}$

# No $\bigcirc$ subgraph of $M_{i}$ or $\overline{M_{i}}$ 


$A A, A T_{1}, T_{1} T_{1}$


No $\bigcirc$ subgraph of $M_{i}$ or $\overline{M_{i}}$

$A A, A T_{1}, T_{1} T_{1}$
$T_{3} T_{3}, T_{3} T_{4}, T_{4} T_{4}$


No $\bigcirc$ subgraph of $M_{i}$ or $\overline{M_{i}}$

$A A, A T_{1}, T_{1} T_{1}$
$T_{3} T_{3}, T_{3} T_{4}, T_{4} T_{4}$


## Sketch of the proof

- $M_{1}$ and $M_{2}$ are edge-disjoint
- both $G_{1}$ and $G_{2}$ admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of $G$, therefore
- both $M_{1}$ and $M_{2}$ are non-empty
- neither $M_{i}$ nor $\overline{M_{i}}$ contains a subgraph isomorphic to



## Sketch of the proof

- $M_{1}$ and $M_{2}$ are edge-disjoint
- both $G_{1}$ and $G_{2}$ admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of $G$, therefore
- both $M_{1}$ and $M_{2}$ are non-empty
- neither $M_{i}$ nor $\overline{M_{i}}$ contains a subgraph isomorphic to

- no vertices of degree 1 in $M_{1}$ nor $M_{2}$ (Kemp chains)


## Sketch of the proof

- $M_{1}$ and $M_{2}$ are edge-disjoint
- both $G_{1}$ and $G_{2}$ admit a Fulkerson colouring, otherwise we have a contradiction with the minimality of $G$, therefore
- both $M_{1}$ and $M_{2}$ are non-empty
- neither $M_{i}$ nor $\overline{M_{i}}$ contains a subgraph isomorphic to

- no vertices of degree 1 in $M_{1}$ nor $M_{2}$ (Kempe chains)
- no vertices of degree 2 in $M_{1}$ nor $M_{2}$ incident with a loop (Kempe chains)


## 5-edge-cuts

- 56 types of colourings


## 5-edge-cuts

- 56 types of colourings
- $2^{56}$ subsets


## 5-edge-cuts

- 56 types of colourings
- $2^{56}$ subsets
- with the help of a computer we identified the subsets that are


## 5-edge-cuts

- 56 types of colourings
- $2^{56}$ subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches


## 5-edge-cuts

- 56 types of colourings
- $2^{56}$ subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches
- do not contain a subsets of colourings corresponding to an acyclic 5-pole


## 5-edge-cuts

- 56 types of colourings
- $2^{56}$ subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches
- do not contain a subsets of colourings corresponding to an acyclic 5-pole
- their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole


## 5-edge-cuts

- 56 types of colourings
- $2^{56}$ subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches
- do not contain a subsets of colourings corresponding to an acyclic 5-pole
- their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole
- have in complement one of such sets


## 5-edge-cuts

- 56 types of colourings
- $2^{56}$ subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches
- do not contain a subsets of colourings corresponding to an acyclic 5-pole
- their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole
- have in complement one of such sets
- 13 pairs left of sets of colourings


## Theorem

Let $G$ be a smallest counterexample to the Fulkerson conjecture. Then $G$ is cyclically 5-edge-connected and every cycle separating 5-edge-cut either separates 5-circuit or separates sets of colourings $S_{1}$ and $S_{2}$.

## Thank you for your attention!

