
Smallest counterexample to
the Fulkerson conjecture

must be cyclically 5-edge-connected

Edita Máčajová
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Fulkerson Conjecture

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings
that together cover each edge exactly twice.
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6 perfect matchings on I5
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6 perfect matchings on I5
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Introduction

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings
that together cover each edge exactly twice.

Do we need to require a graph to be bridgeless?
I YES! (a bridge in a cubic graph belongs to every perfect matching)

trivially true for 3-edge-colourable graphs

DIFFERENT FORMULATION: if we double the edges in a bridgeless
cubic graph, we obtain class 1 graph

if subtraction is permitted, then the constant function 2 can be
obtained [Seymour, 1977]
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Covering all edges in graph with the same number of
perfect matchings

Conjecture (Weak Version of Fulkerson Conjecture)

There exists a constant k such that any bridgeless cubic graphs contains a
family of 3k perfect matchings that together cover every edge exactly
k-times.

Theorem (Edmonds 1965)

For any bridgeless cubic graph there exists a constant k and 3k perfect
matchings such that each edge is in k of them.

∃k∀G ∃3k PM s.t. every edge is in k PM ... ??? OPEN

∀G∃k ∃3k PM s.t. every edge is in k PM ... X YES
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Results towards the Fulkerson conjecture

the Fulkerson conjecture is

proven only for several explicitly defined classes of graphs

equivalent to the statement that every bridgeless cubic graph contains
pair of edge-disjoint matchings M1 and M2 such that

(i) M1 ∪M2 induces a 2-regular subgraph of G and
(ii) the graph obtained from G \Mi by suppressing all degree-2-vertices, is

3-edge-colourable for each i=1,2.

[Hao, Niu, Wang, Zhang, Zhang, 2009]

is true for cubic graphs that are C(8)-linked [Hao, Zhang, Zheng, 2018]
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Edita Máčajová (Bratislava) Fulkerson conjecture May 2019 6 / 25



Results towards the Fulkerson conjecture

the Fulkerson conjecture is

proven only for several explicitly defined classes of graphs

equivalent to the statement that every bridgeless cubic graph contains
pair of edge-disjoint matchings M1 and M2 such that

(i) M1 ∪M2 induces a 2-regular subgraph of G and
(ii) the graph obtained from G \Mi by suppressing all degree-2-vertices, is

3-edge-colourable for each i=1,2.

[Hao, Niu, Wang, Zhang, Zhang, 2009]

is true for cubic graphs that are C(8)-linked [Hao, Zhang, Zheng, 2018]
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Berge Conjecture

Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings
that together cover all the edges of the graph.

Fulkerson Conjecture ⇒ Berge Conjecture

Theorem (Mazzuoccolo, 2011)

The Berge Conjecture and the Fulkerson Conjecture are equivalent.
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Petersen colouring conjecture

Petersen colouring conjecture

The edges of every bridgeless cubic graphs can be coloured with the edges
of the Petersen graph in such a way that colours of three edges that meet
at any vertex meet at a vertex of the Petersen graph.

the Petersen colouring conjecture implies the Fulkerson conjecture
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Cremona–Richmond configuration
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Cremona–Richmond configuration
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Fan-Raspaud Conjecture

Fan-Raspaud Conjecture, 1994

Every bridgeless cubic graph has three perfect matchings with empty
intersection.

M1

∅

M2 ∩M3 M1 ∩M2

M1 ∩M3

M2 M3

FC implies Fan-Raspaud conjecture
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Fano Plane

(0,1,1) (0,1,0)

(1,1,0)

(1,0,0)

(1,0,1)

(0,0,1)

(1,1,1)

F6-configuration is bridgeless universal [EM,Škoviera]
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Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be
removed in order to obtain at least two components containing cycles

��������������������������
��������������������������
��������������������������

��������������������������

k edges

Conjecture (Jaeger, Swart’80)

There are no snarks with cyclic connectivity greater than 6.

Oddness ξ(G ) of a bridgeless cubic graph G is the smallest number of odd
simple cycles in a 2-factor of G .

ξ(G ) = 0 ⇔ G is 3-edge-colourable
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Minimal counterexamples to some conjectures

Conjecture

Fulkerson

Conjecture

conj. connectivity
girth

cyclic
oddness

[Huck] [Huck]

5−flow

5−cycle double
cover C.

[Kochol] [Kochol] [Mazzuoccollo, Steffen]

≥ 5

≥ 4
≥ 6≥ 12

≥ 4 ≥ 2

≥ 11 ≥ 6 ≥ 6
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Reduction of 2- and 3- cycle separating cuts

suppose that a smallest counterexample to FC contains a 3-edge-cut

similarly, we can reduce 2-edge-cuts, therefore

Observation

A smallest potential counterexample to the FC is cyclically
4-edge-connected.
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Parity lemma

Lemma

Let G be a k-regular multipole. Assume that the edges of G are coloured
with k-colours and ni dangling edges has colour i . Then

n1 ≡ n2 ≡ . . . ≡ nk (mod 2).

4 cuts:

AT4T3T2

We only are interested in the partition of edges, not in the colours
themselves.
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”Splitting” of a Fulkerson colouring

”Splitting” of a Fulkerson colouring into two 3-edge-colourings of a
4-edge-cut

there are
(4

2

)
+ 4 = 10 types of Fulkerson colourings of a 4-edges-cut

there are 210 possible sets of types of colouring, BUT

not all of them are achievable (Kempe chains)
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”Splitting” of a Fulkerson colouring

”Splitting” of a Fulkerson colouring into two 3-edge-colourings of a
4-edge-cut
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Kempe chains for a Fulkerson colouring
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Graph of Fulkerson colourings M

according to a possible Fulkerson colouring, each 4-pole corresponds to a
subraph of M

T4

A

T2

T3
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Main result

Theorem

A smallest possible counterexample to the Fulkerson conjecture is
cyclically 5-edge-connected.

Sketch of the proof.

a smallest counterexample is cyclically 4-edge-connected

assume that G is a smallest counterexample and that G contains a
cycle separating 4-edge-cut S

subgraphs of M
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Sketch of the proof

M1 and M2 are edge-disjoint

both G1 and G2 admit a Fulkerson colouring, otherwise we have a
contradiction with the minimality of G , therefore

both M1 and M2 are non-empty

neither Mi nor Mi contains a subgraph isomorphic to
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No subgraph of Mi or Mi

AA,AT1,T1T1
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Sketch of the proof
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both G1 and G2 admit a Fulkerson colouring, otherwise we have a
contradiction with the minimality of G , therefore

both M1 and M2 are non-empty

neither Mi nor Mi contains a subgraph isomorphic to

no vertices of degree 1 in M1 nor M2 (Kempe chains)

no vertices of degree 2 in M1 nor M2 incident with a loop (Kempe
chains)
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5-edge-cuts

56 types of colourings

256 subsets

with the help of a computer we identified the subsets that are
I closed under 1 and 2 Kempe switches
I do not contain a subsets of colourings corresponding to an acyclic

5-pole
I their complement does not contain a subsets of colourings

corresponding to an acyclic 5-pole
I have in complement one of such sets

13 pairs left of sets of colourings

Theorem

Let G be a smallest counterexample to the Fulkerson conjecture. Then G
is cyclically 5-edge-connected and every cycle separating 5-edge-cut either
separates 5-circuit or separates sets of colourings S1 and S2.
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Edita Máčajová (Bratislava) Fulkerson conjecture May 2019 24 / 25



5-edge-cuts

56 types of colourings

256 subsets

with the help of a computer we identified the subsets that are
I closed under 1 and 2 Kempe switches
I do not contain a subsets of colourings corresponding to an acyclic

5-pole
I their complement does not contain a subsets of colourings

corresponding to an acyclic 5-pole
I have in complement one of such sets

13 pairs left of sets of colourings

Theorem

Let G be a smallest counterexample to the Fulkerson conjecture. Then G
is cyclically 5-edge-connected and every cycle separating 5-edge-cut either
separates 5-circuit or separates sets of colourings S1 and S2.
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Thank you for your attention!
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